
10/10/2022, 12:38 Lab2 - MV* Architectures - Software Architecture Labs

127.0.0.1:8000/TP-ArchLog/tp2/ 1/2

Lab2 - MV* Architectures

Download PDF

Introduction

The MV* architecture is a common software architecture pattern that is motivated by the idea
of having Separated Presentation which provides a clear division between domain objects that
model our perception of the real world, and presentation objects that are the GUI elements we
see on the screen. This reduces the coupling between components and allows each
component to be independently developed, tested, modi�ed, reused and scaled.

Questions

MV* is an umbrella term that encompasses variants of this architecture pattern, and they
di�er in terms of the type and level of coupling between the components. Identify the
advantages, disadvantages and use cases of :

http://127.0.0.1:8000/TP-ArchLog/tp2.pdf
https://martinfowler.com/eaaDev/SeparatedPresentation.html


10/10/2022, 12:38 Lab2 - MV* Architectures - Software Architecture Labs

127.0.0.1:8000/TP-ArchLog/tp2/ 2/2

MVC

MVP

MVVM

The Tunisian ministry of health is organizing a software development hackathon in order to be
able to recruit the best talent that can develop a mobile application for the EVAX platform.
Motivated by the interesting work opportunity (and the even more interesting cash prize),
everyone in your class has decided to participate.

More than one architecture comes to mind. Keeping in mind that this is a 24 hour highly
competitive hackathon where you need to be fast at developing this proof of concept, what
architecture would you choose?

Congratulations! Now that you have won the hackathon (and helped your savings ), it is time
to actually build the mobile application. It goes without saying that this application should be
robust with minimal bugs, so that it can be safely deployed and adopted by the ministry. So, in
order for you to be con�dent with your code, it is recommended to follow a TDD approach in
order to catch bugs early on and make sure that you have a higher overall test coverage. One
thing to keep in mind as well is that this application is not a basic CRUD one. It has multiple
views with eventual complex operations (like sending vaccine SMS and their reminders,
automatically rescheduling missed appointments, etc.).

Having taken all of the above into consideration, what would be the architectural style that
you would choose?

What refactoring would you suggest for both the web and mobile applications ? What
architectures would you then suggest?

Last update: 2022-10-06


